<u>PARTIAL DIFFERENTIATION</u> <u>AND</u> APPLICATIONS OF PARTIAL DIFFERENTIATION

! Introduction to topic :

Here, we are going to discuss continuity & derivatives of functions having more than one independent variables.

Weightage for university exam: 16Marks No. of lectures required to teach: 12hrs

Definition of function having more than one independent variables:

If three variables x, y, z are related in such a way that z depends upon the values of x&y, then z is called function of two variables x&y. It is denoted z = f(x, y).

Similarly, w = g(x, y, z) is a function of three variables x, y, z. $U = f(x_1, x_2, x_3, \dots, x_n)$ is a function of n variables $x_1, x_2, x_3, \dots, x_n$.

Definition of continuity of two variable functions:

A function f(x, y) is said to be continous at (a, b) if

- (i) f is defined at (a, b)
- (ii) $\lim_{(x, y) \to (a, b)} f(x, y)$ exists and
- (iii) $\lim_{(x, y)\to(a, b)} f(x, y) = f(a, b)$ in whatever manner x&y approach a & b respectively.

Definition of partial derivatives of first order:

Let z = f(x, y) be a function of two variables.

We can make change in z by three ways.

First: keep y constant and make change in value of x Second: keep x constant and make change in value of y Third: make change in value of x&y both simultaneously.

If we make change in value of x, keeping y constant then the relative change in value of z is called partial derivative of z with respect to x, and it is denoted by

 $\frac{\partial f}{\partial x}$ or f_x or $\frac{\partial z}{\partial x}$. Similarly, partial derivative of z with respect to y is denoted by

$$\frac{\partial f}{\partial y} \operatorname{or} f_{y} \operatorname{or} \frac{\partial z}{\partial y}. \quad \text{Also,} \quad \frac{\partial f}{\partial x} = f_{x} = \frac{\partial z}{\partial x} = \lim_{\delta x \to 0} \frac{f(x + \delta x, y) - f(x, y)}{\delta x}.$$

$$\frac{\partial f}{\partial y} = fy = \frac{\partial z}{\partial y} = \lim_{\delta y \to 0} \underline{f(x, y + \delta y) - f(x, y)}.$$

PARTIAL DIFFERENTIATION OF HIGHER ORDER:

Let z = f(x, y) then $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ are first opened derivatives of z with respect to x &y.

Second order partial derivatives of z with respect to x & y are denoted by

$$\frac{\partial^{2} z}{\partial x^{2}} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = f_{xx}, \frac{\partial^{2} z}{\partial y^{2}} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = f_{yy}$$
$$\frac{\partial^{2} z}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = f_{yx}, \frac{\partial^{2} z}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = f_{xy}.$$

Third order partial derivatives of z with respect to x & y are denoted by

$$\frac{\partial^{3} z}{\partial x^{3}} = \frac{\partial}{\partial x} \left(\frac{\partial^{2} z}{\partial x^{2}} \right) = f_{xxx}, \frac{\partial^{3} z}{\partial y^{3}} = \frac{\partial}{\partial y} \left(\frac{\partial^{2} z}{\partial y^{2}} \right) = f_{yyy},$$

$$\frac{\partial^{3} z}{\partial x^{2} \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial^{2} z}{\partial x \partial y} \right) = f_{yxx}, \frac{\partial^{3} z}{\partial y^{2} \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y \partial x} \right) = f_{xyy}$$

$$\frac{\partial^{3} z}{\partial x \partial y^{2}} = \frac{\partial}{\partial x} \left(\frac{\partial^{2} z}{\partial y^{2}} \right) = f_{yyx}, \frac{\partial^{3} z}{\partial y \partial x^{2}} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x^{2}} \right) = f_{xxy}.$$

SOME OTHER NOTATIONS TO DENOTE P.D.:

let $x = f(r,\theta) \& y = g(r,\theta)$ (i.e. x & y both are the functions of $r \& \theta$) then indirectly x is a function of y and y is every y.

In this case,

$$\left(\frac{\partial x}{\partial r}\right)_{\theta}$$
 denotes derivative of x w.r.t. r keeping θ constant

$$\left(\frac{\partial y}{\partial r}\right)_{\theta}$$
 denotes derivative of y w.r.t. r keeping θ constant

$$\left(\frac{\partial x}{\partial \theta}\right)_r$$
 denotes derivative of x w.r.t. θ keeping r constant

$$\left(\frac{\partial y}{\partial \theta}\right)_r$$
 denotes derivative of x w.r.t. θ keeping r constant

if we eliminate θ from above function we will get x as a function of y & r or y as a function of x & r.

$$\left(\frac{\partial x}{\partial y}\right)_r$$
 denotes derivative of x w.r.t. y keeping r constant

$$\left(\frac{\partial x}{\partial r}\right)_{y}$$
 denotes derivative of x w.r.t. θ keeping r cons $\tan t$

And similarly other derivatives can be defined.

DERIVATIVES OF FUNCTION OF FUNCTION :

If z = f(t) and t = g(x,y) then z = fog(x,y) is a composite function of f & g. If we consider z as a function of t alone then we have ordinary derivative of z w.r.t. t which is $\frac{dz}{dt}$, but if we consider z as a composite function of t &g then t will be function of two variables .in this case we can find partial derivatives of t w.r.t. t which are $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$. And relation between above derivatives is

$$\frac{\partial z}{\partial x} = \frac{dz}{dt} \cdot \frac{\partial t}{\partial x} & \frac{\partial z}{\partial y} = \frac{dz}{dt} \cdot \frac{\partial t}{\partial y}.$$

> CHAIN RULE FOR PARTIAL DIFFERENTIATION :

(A) If u = f(x, y) and if x = g(t) & y = h(t) then u is indirectly function of t alone Hence, $\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} \dots \dots \dots \dots (1)$

 $\frac{du}{dt}$ is called total differential coefficient

(i) If we eliminate dt from both sides we get Total Derivative of u

That can be given by

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy \dots (2)$$

(ii) If we replace t by x in above (1) then we get

$$\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \frac{dy}{dx} \dots (3)$$

In this case u is a function of x &y and y is function of x. so ultimately u becomes function of x alone.

If $u = f(x_1, x_2, x_3, x_4,...,x_n)$ and all $x_1,x_2,x_3,x_4,...,x_n$ are functions of a single variable t.

Then,

$$\frac{du}{dt} = \frac{\partial u}{\partial x_1} \frac{dx_1}{dt} + \frac{\partial u}{\partial x_2} \frac{dx_2}{dt} + \frac{\partial u}{\partial x_3} \frac{dx_3}{dt} + \dots + \frac{\partial u}{\partial x_n} \frac{dx_n}{dt} \dots (4)$$

And
$$du = \frac{\partial u}{\partial x_1} dx_1 + \frac{\partial u}{\partial x_2} dx_2 + \frac{\partial u}{\partial x_3} dx_3 + \dots + \frac{\partial u}{\partial x_n} dx_n \dots (5)$$

(B) If z = f(x, y) and if x = g(u, v) & y = h(u, v) then z is indirectly function of two variables u & v.

Hence,

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u}$$

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \qquad (6)$$

Solved Problems Based On Above Discussion:

1). If
$$u = \tan^{-1} \left(\frac{y}{x} \right)$$
 then verify: $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$.

2). If
$$u = x^2y + y^2z + z^2x$$
, prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = (x + y + z)^2$

3) If
$$v = (1 - 2xy + y^2)^{\frac{-1}{2}}$$
,

prove that, (i) $x \frac{\partial v}{\partial x} - y \frac{\partial v}{\partial y} = y^2 v^3$

$$(ii) \frac{\partial}{\partial x} \left[\left(1 - x^2 \right) \frac{\partial v}{\partial x} \right] + \frac{\partial u}{\partial y} \left[y^2 \frac{\partial v}{\partial y} \right] = 0$$

4). If
$$z = \log(x^2 + y^2) + \tan^{-1}\left(\frac{y}{x}\right)$$
,

prove that
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$
.

5). If
$$z(x + y) = x^2 + y^2$$
,

prove that $\left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)^2 = 4\left[1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right]$.

6). If
$$f(x, y) = \frac{1}{\sqrt{y}} e^{\frac{-(x-a)^2}{4y}}$$
,

$$prove \quad that \quad (i) \frac{\partial^2 f}{\partial x^2} - \frac{\partial f}{\partial y} = 0 \quad (ii) \quad \frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x} = 0.$$

7). If
$$V = r^m$$
, where $r^2 = x^2 + y^2 + z^2$,
$$provethat \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = m(m+1)r^{m-2}$$

8). provethat at a point
$$x = y = z$$
 of the surface $x^x y^y z^z = c$, $\frac{\partial^2 z}{\partial x \partial y} = -(x \log ex)^{-1}$

9). If
$$u = e^{xyz}$$
 show that $\frac{\partial^3 u}{\partial y \partial x \partial z} = -(1 + 3xyz + x^2 y^2 z^2)$. u

10). If
$$\frac{x^2}{a^2 + u} + \frac{y^2}{b^2 + u} + \frac{z^2}{c^2 + u} = 1$$

where u is afunction of x, y, z.

prove that
$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2 = 2\left[x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}\right]$$

11). If
$$u = \frac{x + y + z}{\left(x^2 + y^2 + z^2\right)^{\frac{1}{2}}}$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.

(5)

- 12) If ux + vy = 0 and $\frac{u}{x} + \frac{v}{y} = 1$, then prove that $\left(\frac{\partial u}{\partial x}\right)_y \left(\frac{\partial v}{\partial y}\right)_x = \frac{y^2 + x^2}{y^2 x^2}$.
- 13) If u = ax + by and v = bx ay, then prove that $\left(\frac{\partial u}{\partial x}\right)_{v} \left(\frac{\partial x}{\partial y}\right)_{v} \left(\frac{\partial y}{\partial y}\right) \left(\frac{\partial y}{\partial y}\right)_{v} = 1$.
- 14) If $x^2 = au + bv$ and $y^2 = au bv$, then prove that $\left(\frac{\partial u}{\partial x}\right)_v \left(\frac{\partial x}{\partial u}\right)_v = \frac{1}{2} = \left(\frac{\partial v}{\partial y}\right)_v \left(\frac{\partial y}{\partial v}\right)_u$.
- 15) If $x = u \tan v$ and $y = u \sec v$, then prove that $\left(\frac{\partial u}{\partial x}\right)_v \left(\frac{\partial v}{\partial x}\right)_v = \left(\frac{\partial u}{\partial y}\right)_u \left(\frac{\partial v}{\partial y}\right)_u = \left(\frac{\partial u}{\partial y}\right)_$
- 16) If $x = r \cos \theta$ and $y = r \sin \theta$, then prove that (i) $\frac{1}{r} \left(\frac{\partial x}{\partial \theta} \right)_r = r \left(\frac{\partial \theta}{\partial x} \right)_y$
- 17) If $xyz = a^3$, then prove that $\left(\frac{\partial y}{\partial x}\right)_z \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial x}{\partial z}\right)_y = -1$.

18) Find
$$\frac{du}{dt}$$
 when $u = \sin\left(\frac{x}{y}\right), x = e^t, y = t^2$

19) If
$$u = f(r, s, t)$$
 and $r = \frac{x}{y}$, $s = \frac{y}{z}$, $t = \frac{z}{x}$, provathat $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.

20) If z be a function of xandy and
$$x = e^{u} + e^{-v}$$
, $y = e^{-u} - e^{v}$ prove that $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial v}$.

21) If
$$z = e^{ax+by} f(ax - by)$$
, prove that $b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = 2baz$.

22) If
$$u = f\left(\frac{x}{z}, \frac{y}{z}\right)$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$.

23) If
$$z = f(x, y)$$
, $x = u \cosh v$ and $y = u \sinh v$, prove that
$$\left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial u}\right)^2 - \frac{1}{u^2} \left(\frac{\partial z}{\partial v}\right)^2.$$

24) find the total differential of
$$f(x, y, z) = xe^{y^2 - z^2}$$

25) If z is a function of x and y and u & v be two variables such that u = ix + my, v = ly - mx, then prove that

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \left(l^2 + m^2\right) \left(\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2}\right)$$

26) If z is a function of x and y and u & v be two variables such that $x = e^u \sin v$, $y = e^u \cos v$, then prove that

$$(x^{2} + y^{2}) \frac{\partial^{2} z}{\partial x^{2}} + \frac{\partial^{2} z}{\partial y^{2}} = \left(\frac{\partial^{2} z}{\partial u^{2}} + \frac{\partial^{2} z}{\partial v^{2}}\right)$$

27) If $x = \sqrt{vw}$, $y = \sqrt{wu}$, $z = \sqrt{uv}$ and ϕ is a function of x, y, z then show that $x \frac{\partial \phi}{\partial x} + y \frac{\partial \phi}{\partial y} + z \frac{\partial \phi}{\partial z} = u \frac{\partial \phi}{\partial u} + v \frac{\partial \phi}{\partial v} + w \frac{\partial \phi}{\partial w}$.

***** IMPLICIT FUNCTION :

If we can not express x as a function of y or y as a function x even though we have relationship f(x, y) = 0, then the function f(x, y) = 0 is called an implicit function.

for e.g.
$$x^3 + y^3 + 3axy = 0$$
.

(A) DIFFERENTIATION OF IMPLICIT FUNCTION:

To find derivative of implicit function we can use following method. If f(x, y) = 0 is a given implicit function

then assume,

(i)
$$u = f(x, y)$$
 and $y = g(x)$

Hence, by chain rule
$$\frac{\partial u}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$$
 but $f(x, y) = 0 = u$

$$\therefore 0 = f_x + f_y \frac{dy}{dx}$$

$$\therefore \frac{dy}{dx} = -\frac{f_x}{f_x}$$

(ii)
$$u = f(x, y)$$
 and $x = h(x)$

Hence, by chain rule
$$\frac{\partial u}{\partial y} = \frac{\partial f}{\partial x} \frac{dx}{dy} + \frac{\partial f}{\partial y}$$
 but $f(x, y) = 0 = u$

$$\therefore 0 = f_x \frac{dx}{dy} + f_y$$

$$\therefore \frac{dx}{dy} = -\frac{f_y}{f_x}$$

(B) PARTIAL DIFFERENTIATION OF IMPLICIT FUNCTION :

f(x, y, z) = 0 represents an implicit function . To find partial derivative of implicit function we can use following method. If f(x, y, z) = 0 is a given implicit function then assume,

(i)
$$u = f(x, y, z) \text{ and } z = g(x, y)$$

Hence, by chain rule
$$\frac{\partial u}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial x}$$
And
$$\frac{\partial u}{\partial y} = \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial y}$$
But $f(x, y, z) = 0 = u$

But
$$f(x, y, z) = 0 = u$$

$$\therefore 0 = f_x + f_z \frac{\partial z}{\partial x}$$
And
$$\therefore 0 = f_y + f_z \frac{\partial z}{\partial y}$$

$$\therefore \frac{\partial z}{\partial x} = -\frac{f_x}{f_z}$$

$$\therefore \frac{\partial z}{\partial y} = -\frac{f_y}{f_z}$$

(ii)
$$u = f(x, y, z)$$
 and $y = h(x, z)$

Hence, by chain rule
$$\frac{\partial u}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$
And
$$\frac{\partial u}{\partial z} = \frac{\partial f}{\partial z} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial z}$$
But $f(x, y, z) = 0 = u$

$$\therefore 0 = f_x + f_y \frac{\partial y}{\partial x}$$

$$\therefore 0 = f_z + f_y \frac{\partial y}{\partial z}$$

$$\therefore \frac{\partial y}{\partial x} = -\frac{f_z}{f_y}.$$

$$\therefore \frac{\partial y}{\partial z} = -\frac{f_z}{f_y}.$$

(iii) u = f(x, y, z) and x = t(y, z)

Hence, by chain rule
$$\frac{\partial u}{\partial y} = \frac{\partial f}{\partial y} + \frac{\partial f}{\partial x} \frac{\partial x}{\partial y} \qquad \text{And} \qquad \frac{\partial u}{\partial z} = \frac{\partial f}{\partial z} + \frac{\partial f}{\partial x} \frac{\partial x}{\partial z}$$

$$\text{But } f(x, y, z) = 0 = u$$

$$\therefore 0 = f_y + f_x \frac{\partial x}{\partial y}$$

$$\therefore \frac{\partial x}{\partial y} = -\frac{f_y}{f_x}$$

$$\therefore \frac{\partial x}{\partial z} = -\frac{f_z}{f_x}$$

Solved Problems Based On Above Discussion

- 1) Find $\frac{dy}{dx}$ by implicit differentiation.
 - (i) $x^3 + y^3 + 3xy = 0$.
 - $(ii) (\cos x)^y = (\sin y)^x$
- 2) If f(x, y, z) = 0, provethat $\left(\frac{\partial z}{\partial x}\right)_{y} \left(\frac{\partial y}{\partial z}\right)_{x} \left(\frac{\partial x}{\partial y}\right)_{z} = -1$
- 3) If f(x, y) = 0 and $\phi(x, y) = 0$, show that $\frac{\partial f}{\partial y} \cdot \frac{\partial \phi}{\partial z} \cdot \frac{dz}{dx} = \frac{\partial f}{\partial x} \cdot \frac{\partial \phi}{\partial y}$.
- 4) If $u(x, y) = c_1$ and $v(x, y) = c_2$ show that the curves $u = cons \tan ts$ and $v = cons \tan ts$ intersect orthogonally if $\frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial y} = 0$.

***** HOMOGENEOUS FUNCTIONS:

A function f of two variables x & y is said to be homogeneous function of degree n if,

$$f(tx,ty)=t^n f(x,y) \underline{or} f(x,y) = x^n g\left(\frac{y}{x}\right) \underline{or} f(x,y) = y^n h\left(\frac{x}{y}\right).$$

For e.g. $u = \frac{x^2 y^2}{x + y}$. is a homogeneous function of degree 3.

Since
$$u = \frac{x^4 \left(\frac{y}{x}\right)^2}{x \left(1 + \left(\frac{y}{x}\right)\right)} = x^3 g \left(\frac{y}{x}\right)$$
 or $u(tx, ty) = t^3 \frac{x^2 y^2}{x + y}$.

EULER'S THEOREM:

Statement:

If u is a homogeneous function of x & y of dergree n then

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = nu.$$

Proof:

Since u = f(x, y) is a homogeneous function of degree n, it can be Written as

$$u(x, y) = x^n g\left(\frac{y}{x}\right)$$
(i)

differentiating (i) partiallyw.r.t x

$$\frac{\partial u}{\partial x} = nx^{n-1}g\left(\frac{y}{x}\right) + x^n g'\left(\frac{y}{x}\right)\left(\frac{-y}{x^2}\right)$$
$$= nx^{n-1}g\left(\frac{y}{x}\right) - x^{n-2}y g'\left(\frac{y}{x}\right)$$

hence

$$x\frac{\partial u}{\partial x} = nx^n g\left(\frac{y}{x}\right) - x^{n-1} y g'\left(\frac{y}{x}\right) \dots (ii)$$

differentiating (i) partiallyw.r.t y

$$\frac{\partial u}{\partial y} = x^n g' \left(\frac{y}{x} \right) \left(\frac{1}{x} \right)$$
$$= x^{n-1} g' \left(\frac{y}{x} \right)$$

hence

$$y \frac{\partial u}{\partial y} = x^{n-1} y g' \left(\frac{y}{x} \right) \dots (iii)$$

Now, adding (ii) & (iii) we get,

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = nx^n g\left(\frac{y}{x}\right)$$
$$= nu$$

 \triangleright Cor-1: If u is a homogeneous function of x, y of degree n, then

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = n(n-1)u.$$

- **Cor-2**: If z is a homogeneous function of x, y of degree n and z = f(u), Then, $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n \frac{f(u)}{f'(u)}$.
- \triangleright Cor-3: If z is a homogeneous function of x, y of degree n and then

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = g(u)[g'(u) - 1].$$

where
$$g(u) = n \frac{f(u)}{f'(u)}$$
.

1) verify Euler 's theorem for (i)
$$u = e^{\frac{x}{y}}$$

(ii)
$$u = (x^2 + y^2 + z^2)^{\frac{-1}{2}}$$
.

2) If
$$u = f\left(\frac{x}{y}\right)$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$.

3) If
$$u = \sec^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$.

4) If
$$z = xy$$
 $f\left(\frac{y}{x}\right)$, prove that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2z$.

5) If
$$f(x, y) = \sqrt{x^2 - y^2} \sin^{-1}\left(\frac{y}{x}\right)$$
,

prove that $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = f(x, y)$.

6) If
$$u = \frac{x^2 y^2}{x + y}$$

prove that $x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial x \partial y} = 2 \frac{\partial u}{\partial x}$.

7) show that
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$$
.
when $(i)u = \frac{x-y}{x+y}$ $(ii)u = \frac{xy}{x-y}$ $(iii)u = (x-y)f\left(\frac{y}{x}\right)$

8) If
$$u = \cos \sqrt{\frac{x-y}{x+y}}$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$.

9) If
$$u = \sin^{-1} \sqrt{\frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{\frac{1}{x^{\frac{1}{5}} + y^{\frac{1}{5}}}}}$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{20} \tan u$.

10) If
$$u = \tan^{-1} \sqrt{\frac{x^3 + y^3}{x - y}}$$
, show that (i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$.
(ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 2\sin u \cos 3u$.

11) If
$$u = \cos ec^{-1} \sqrt{\frac{x^{\frac{1}{2}} + y^{\frac{1}{2}}}{\frac{1}{x^{\frac{3}{2}} + y^{\frac{1}{2}}}}}$$
, show that
$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \frac{1}{12} \tan u \left(\frac{13}{12} + \frac{1}{12} \tan^{2} u \right)$$
12) If $u = f\left(\frac{y}{x}\right) + x\phi\left(\frac{x}{y}\right) + 4xy$, show that $x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = 8xy$.

❖ Jacobians:

(1) If u = f(x, y) and v = g(x, y) be differentiable functions then the Jacobian of u & v with respect to x & y is defined and denoted by

$$\frac{\partial(u,v)}{\partial(x,y)} is \ given by \ J = \frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial x} \end{vmatrix}.$$

(2) If u = f(x, y, z), v = g(x, y, z) & w = h(x, y, z) be differentiable functions then the Jacobian of u, v& w with respect to x, y & z is defined and denoted by

$$\frac{\partial(u,v,w)}{\partial(x,y,z)} is \ given by \ J = \frac{\partial(u,v,w)}{\partial(x,y,z)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{vmatrix}.$$

Chain rule for Jacobians:

(1) If u = f(x, y) & v = g(x, y) and x = h(r, s) & y = t(r, s) be differentiable functions then

$$\frac{\partial(u,v)}{\partial(r,s)} = \frac{\partial(u,v)}{\partial(x,y)} \cdot \frac{\partial(x,y)}{\partial(r,s)}$$

(2)
$$\frac{\partial(u,v,w)}{\partial(x,y,z)} \cdot \frac{\partial(x,y,z)}{\partial(r,s,t)} = \frac{\partial(u,v.w)}{\partial(r,s,t)}.$$

❖ Note:

(1) If
$$J = \frac{\partial(u,v)}{\partial(x,y)}$$
 and $J' = \frac{\partial(x,y)}{\partial(u,v)}$ then $J.J' = 1$.

(2) If
$$J = \frac{\partial(u, v, w)}{\partial(x, y, z)}$$
 and $J' = \frac{\partial(x, y, z)}{\partial(u, v, w)}$ then $J.J' = 1$.

Solved Problems Based On Above Discussion:

(1) If
$$x = r \cos \theta$$
, $y = r \sin \theta$, then show that $\frac{\partial(r, \theta)}{\partial(x, y)} = \frac{1}{r}$

- (2) If $x = e^{v} \sec u$, $y = e^{v} \tan u$, then show that J.J' = 1.
- (3) If $x + y = 2e^{\theta} \cos \phi$, $x y = 2ie^{\theta} \sin \phi$, then prove that J.J' =1.
- (4) If $u = \frac{x+y}{1-xy}$ and $v = \tan^{-1} x + \tan^{-1} y$, show that $\frac{\partial(u,y)}{\partial(x,y)} = 0$, if $x,y \neq 1$ also show that $u = \tan v$.
- (5) If $u_1 = f_1(x_1)$, $u_2 = f_2(x_1, x_2)$ & $u_3 = f_3(x_1, x_2, x_3)$. Show that $\frac{\partial (u_1, u_2, u_3)}{\partial (x_1, x_2, x_3)} = \frac{\partial u_1}{\partial x_1} \cdot \frac{\partial u_2}{\partial x_2} \cdot \frac{\partial u_3}{\partial x_3}$

POWER SERIES EXPANSIONS:

Maclaurin's Expansions for functions of two variables:

Maclaurin series Expansions for the function f(x, y) can be given by

$$f(x, y) = f(0, 0) + [x f_x(0, 0) + y f_y(0, 0)]$$

$$+ \frac{1}{2!} [x^2 f_{xx}(0, 0) + 2xy f_{xy}(0, 0) + y^2 f_{yy}(0, 0)] \qquad \dots (i)$$
+ \dots \dots

> Taylor's Expansions for functions of two variables:

Taylor series Expansions for the function f(x, y) can be given by

$$f(x, y) = f(a, b) + [(x - a) f_x(a, b) + (y - b) f_y(a, b)]$$

$$+ \frac{1}{2!} [(x - a)^2 f_{xx}(a, b) + 2(x - a) (y - b) f_{xy}(a, b) + (y - b)^2 f_{yy}(a, b)] \dots (ii)$$
+

Cor-1:

Putting x = a + h & y = b + k in above equation (ii) we get,

$$f(a + h, b + k) = f(a, b) + [h f_x(a, b) + k f_y(a, b)]$$

$$+ \frac{1}{2!} [h^2 f_{xx}(a, b) + 2hk f_{xy}(a, b) + k^2 f_{yy}(a, b)]$$
...(iii)

Cor-2:

Putting a= x & b= y in above equation (iii) we get,

$$f(x + h, y + k) = f(x, y) + [x f_x(x, y) + y f_y(x, y)]$$

$$+ \frac{1}{2!} [x^2 f_{xx}(x, y) + 2xy f_{xy}(x, y) + y^2 f_{yy}(x, y)]$$
.....(iv)

Solved Problems Based On Above Discussion:

- (1) Expand e^{xy} in powers of (x-1) & (y-1).
- (2) Expand $f(x, y) = \sin xy$ in powers of (x-1) & $\left(y \frac{\pi}{2}\right)$ up to second degree terms.
- (3) Expand $e^x \log(1+y)$ in powers of x & y up to third degree terms.
- (4) Expand $e^{ax} \sin by$ in powers of x & y.
- (5) Expand $\tan^{-1}\left(\frac{y}{x}\right)$ in powers of (x-1) & (y-1).

***** MAXIMA AND MINIMA OF FUNCTIONS OF TWO VARIABLES:

Working rules to find maximum and minimum values of a function f(x, y):

- (1) Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
- (2) Solve simultaneous equations $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$ $\frac{\partial f}{\partial x} = 0 \text{ and } \frac{\partial f}{\partial y} = 0 \text{ is necessary condition for function } f(x, y) \text{ to be maximum or minimum.}$
- (3) let (a_1,b_1) , (a_2,b_2) ,.....be solutions of simultaneous equations $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$. These points are called optimal points.
- (4) Evaluate $r = \frac{\partial^2 f}{\partial x^2}$, $s = \frac{\partial^2 f}{\partial x \partial y}$, $t = \frac{\partial^2 f}{\partial y^2}$ at above points.
- (5) Use following table to decide that function is either maxima or minima at optimal points.

Sr	$r t - s^2$	r	conclusion
no.			
1	> 0	< 0	Point of maxima
2	> 0	> 0	Point of minima
3	> 0	= 0	Further investigation required
4	= 0	any	Further investigation required
5	< 0	any	Point of neither Maxima nor Minima Saddle point

(6) points:

Sr	Points	Definition
no.		
1	Optimal point	A point where function satisfies $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$
2	Extreme point	A point where function takes its Maximum or
		Minimum value.
3	Point of maxima	A point where function takes its Maximum value.
4	Point of minima	A point where function takes its Minimum value.
5	Saddle point	A point where function is neither Maxima nor
		Minima

(7) values:

Sr	Points	Definition
no.		
1	Optimal value	Value of function at optimal point
2	Maximum value	Value of function at Point of maxima
3	Minimum value	Value of function at Point of minima

Problems Based On Above Discussion :

Find Maximum and Minimum values for the following.

(1)
$$x^2 + y^2 + 6x + 12$$

(2)
$$x^2 + 2xy + 2y^2 + 2x + y$$

(3)
$$x^3 + y^3 - 3axy$$

$$(4) \quad 2(x^2 - y^2) - x^4 + y^4$$

(5)
$$\sin x + \sin y + \sin(x + y)$$
 $x \ge 0$, $y \le \frac{\pi}{2}$.

$$(6) \quad x^2y + xy^2 - axy$$

(7)
$$x^3 + y^3 - 63(x+y) + 12xy$$

(8)
$$\sin x \sin y \sin(x+y)$$
 $x > 0, y < \pi$.

LAGRANGE'S METHOD OF UNDETERMIND MULTIPLIERS:

This method is useful to find extreme values of a function

$$u = f(x, y, z)$$

subject to the condition
$$\phi(x, y, z) = 0$$

Working rules to find maximum and minimum values of a function

$$u = f(x, y, z)$$

(16)

Subject to the condition
$$\phi(x, y, z) = 0$$

- (1) Form the Lagrangian equation $u = f(x, y, z) + \lambda \phi(x, y, z)$.
- (2) Solve equations $\frac{\partial u}{\partial x} = 0$, $\frac{\partial u}{\partial y} = 0$ & $\frac{\partial u}{\partial z} = 0$ along with ϕ (x, y, z) = 0 and find the values of x, y, z & λ .

 The values of x, y, z so obtained will give the extreme values of f(x, y, z).

Problems Based On Above Discussion:

- (1) Find the maximum value of xyz subject to the restriction x + y + z = a.
- (2) Divide 30 into three parts such that the continued product of the first, the square of the second and the cube third be a maximum.
- (3) Divide 120 into three parts so that the sum of the products taken two at a time shall be a maximum.
- (4) Find the point in the space such that the sum of whose e coordinates is 48 and whose distance from the origin is minimum.
- (5) If $u = \frac{a^3}{x^2} + \frac{b^3}{y^2} + \frac{c^3}{z^2}$, where x + y + z = 1 prove that the stationary

values of u is given by
$$x = \frac{a}{a+b+c}$$
, $y = \frac{b}{a+b+c}$, $z = \frac{c}{a+b+c}$.

***** TANGENT PLANE TO THE SURFACE:

Let the equation of the surface be f(x, y, z) = 0.

Then the equation of the tangent plane to the surface f(x, y, z) = 0 at the point

P(**x**₁, **y**₁, **z**₁) is
$$(x - x_1) \left(\frac{\partial f}{\partial x} \right)_P + (y - y_1) \left(\frac{\partial f}{\partial y} \right)_P + (z - z_1) \left(\frac{\partial f}{\partial z} \right)_P = 0.$$

NORMAL LINE TO THE SURFACE:

Let the equation of the surface be f(x, y, z) = 0.

Then the equation of the normal line to the surface f(x, y, z) = 0 at the point

$$\mathbf{P}(\mathbf{x_1}, \mathbf{y_1}, \mathbf{z_1}) \text{ is } \frac{\left(x - x_1\right)}{\left(\frac{\partial f}{\partial x}\right)_P} = \frac{\left(y - y_1\right)}{\left(\frac{\partial f}{\partial y}\right)} = \frac{\left(z - z_1\right)}{\left(\frac{\partial f}{\partial z}\right)_P}.$$

Problems Based On Above Discussion :

- (1) Find the equations of the tangent plane and the normal line to the surface
 - (I) $z = 3x^2 + 2y^2$ at (1, 2, 11).
 - (II) $x^2 + 2y^2 + +3z^2 = 12$ at (1, 2, -1).
- (2) show that the surfaces z = xy 2 and $x^2 + y^2 + z^2 = 3$ have the same tangent plane at (1, 1, -1).
- (3) Show that the tangent plane to the surface $x^2 = y(x+z)$ at any point passes through origin.
- Show that the plane lx + my + nz = p touches the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, if \ l^2a^2 + m^2b^2 + n^2a^2 = p^2.$$

ERRORS AND APPROXIMATIONS:

ERRORS:

- (1) δx is an error in x.
- (2) $|\delta x|$ is called an absolute error in x.
- (3) $\frac{\delta x}{x}$ is called the relative error in x.
- (4) $\frac{\delta x}{x} \times 100$ is called the percentage error in x.
- \triangleright Let $\mathbf{f}(\mathbf{x}, \mathbf{y})$ be a continuous function of x and y.

Let $\delta x \& \delta y$ be the change in $\mathbf{x} \& \mathbf{y}$ respectively then related change in $\mathbf{f}(\mathbf{x}, \mathbf{y})$ is given by $\delta f = \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial y} \delta y$ approximately.

Problems Based On Above Discussion :

- (1) Find the percentage error in the area of the rectangle when an error of One percent is measuring its length and breadth.
- (2) If the kinetic energy $T = \frac{1}{2}mv^2$, find approximately the change in T as m changes from 49 to 49.5 and v changes from 1600 to 1590.
- (3) If measurements of radius of base and height of a right circular cone are in error by -1 % and 2%, prove that there will be no error in volume.
- (4) The acceleration of a piston is calculated by the formulae $f = w^2 r \left(\cos \theta + \frac{r}{l} \cos 2\theta \right)$, w, θ being variables. The acceleration is calculated for $\theta = 30^0$ and $\frac{r}{l} = \frac{1}{4}$. If the values of w, θ are each 1% small, show that the calculated value of f is about 1.5% too small.
- (5) find the approximate value of
 - (I) $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ at point (3.01, 4.02, 11.98).
 - (II) $\sqrt[4]{[(1.9)^3 + (2.1)^3]}$
 - (III) $\sqrt[5]{[(3.82)^2 + 2(2.1)^3]}$