PARTIAL DIFFERENTIAL EQUATIONS

Weightage for university exam: 18Marks

• Def n :

A diff. equation which involves partial derivatives is called partial differential equation. for e.g. $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$.

***** Formation of a differential equation:

To form a differential equation from a given relationship of variables we will eliminate arbitrary constants or arbitrary functions of these variables using differentiation.

Solution of a partial differential Equation:

A solution or integral of a partial differential equation is a relation between the variables, which is free from derivatives and satisfies the partial differential equation.

For e.g.
$$u = e^x \sin y$$
 is a solution of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

Complete Integral:

The solution which contains a number of arbitrary constants equal to the order of the differential equation is called a complete integral.

***** Methods To Solve Partial Differential Equations:

Method of Direct Integration:

This method is applicable to those problems, where direct Integration is possible. This solution depends on definition of P.D.E.

Lagrange's equation :

The partial differential equation $\mathbf{Pp} + \mathbf{Qq} = \mathbf{R}$, Where P, Q, R are functions of x, y, z. is known as Lagrange's (linear) equation.

The general solution of the partial differential equation Pp + Qq = R, is

 ϕ (u(x,y,z), v(x,y,z)) = 0,

Where ϕ is an arbitrary function and $u(x,y,z) = c_1$ and $v(x,y,z) = c_2$ are two independent solutions of $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$ (subsidiary auxiliary equations).

Solutions of Nonlinear Partial Differential Equations:

Standard forms:

(1) **Equations involving only P and Q:**

Form	f(p,q) = 0	
Method to get solution	: Replace p by a and q by b in $f(p,q)=0$	
	Get form $f(a,b) = 0$ and find relation $b = F(a)$.	
Solution	z = ax + F(a) + c.	

(2) Equations not involving the independent variables:

Form	f(z, p, q) = 0	(1)
Method to get solution	: assume $q = ap$.	
	Then the (1) becomes $f(z, p, ap)$	= 0
	Get form $\mathbf{p} = \phi(z, a)$	
	Use $dz = \phi(z, a) dx + a \phi(z, a) dy$	
Solution	$: \int \frac{dz}{\phi(z,a)} = \mathbf{x} + \mathbf{a}\mathbf{y} + \mathbf{b}.$	

(3) **Separable Equations:**

Form	$: f_1(x,p) = f_2(y,q)$	(1)
Method to get solution	: assume $f_1(x, p) = a = f_2$	(y,q)
	Solving $f_1(x, p) = a$, get	$\mathbf{p} = \phi_1(x, a)$
	Solving $f_2(y,q) = a$,	get $\mathbf{p} = \phi_2(y, a)$
	Use $dz = \phi_1(x, a) dx + \phi_2$	(y,a) dy
Solution	$: z = \int \phi_1(x,a) \mathrm{d}x + \int \phi_2(y,a) \mathrm{d}x + \int$	a)dy + b.

(4) **Clairaut's Form:**

Form	z = px + qy + f(p,q)(1)
Method to get solution	: Replace p by a and q by b in (1)
Solution	: z = ax + by + f(a,b).

(5) Equations Reducible to standard Forms:

This category includes those p.d.e. which do not fall directly under any of the above four forms

We can reduce our given equations in one of the above four forms

Homogeneous Linear Partial Differential Equations With Constant Coefficient: A diff. equation

$$\frac{\partial^{n} z}{\partial x^{n}} + a_{1} \frac{\partial^{n} z}{\partial x^{n-1} \partial y} + a_{2} \frac{\partial^{n} z}{\partial x^{n-2} \partial y^{2}} + \dots + a_{n} \frac{\partial^{n} z}{\partial y^{n}} = F(x, y)$$

Where a_1, a_2, \dots, a_n are constants

is called Linear partial differential equation of nth order first degree.

Above equation can be written by

*

 $(D^{n} + a_{1}D^{n-1}D' + a_{2}D^{n-2}D'^{2} + \dots + a_{n}D'^{n})z = F(x, y) \dots (1)$ Where D = $\frac{d}{dx}$ and D' = $\frac{d}{dy}$

(1) can be written as f(D,D') z = F(x,y)

General Solution of Differential Equation:

Complementary function (C.F.)of Differential Equation

The solution which contains a number of arbitrary constants equal to the order of the differential equation is called the **complementary function** (**C.F.**) of a Differential equation.

Auxiliary Equation:

An equation f(D,D') = 0 is Auxiliary Equation .

***** Method to find C.F. :

Solve equation $(D^n + a_1D^{n-1}D' + a_2D^{n-2}D'^2 + \dots + a_nD'^n)z = 0$ for values of D & D'. Say factorization is $(D - m_1D')(D - m_2D')(D - m_3D')\dots(D - m_nD')=0$. Then we can classify roots and we can find C.F. by following way

Sr. No.	Classification of roots	C.F.
1	If roots $D = m_1, m_2, m_3, \dots, m_n$ of Auxiliary equation are real and distinct	$y = f_1(y + m_1 x) + f_2(y + m_2 x) + \dots$
2	Two roots are equal (real roots) i.e. If roots are $m_1 = m_2$, m_3 , m_n	$y = f_1(y + m_1 x) + x f_2(y + m_1 x) + f_3(y + m_3 x)$

***** Method to find P.I. :

Consider f(D, D') z = F(x, y)

Particular integral can be given by P.I. =
$$\frac{1}{f(D,D')}F(x,y)$$

Lecture notes by Mr. Zalak Patel

Page: - 3 -

Short cut methods to find P.I.:

Let given **L.P.D.E.** is. f(D, D') z = F(x, y)We can use following short cut methods to find P.I.

(1)
$$\frac{1}{f(D,D')}e^{ax+by} = \frac{1}{f(a,b)}e^{ax+by}$$
 if $f(a,b) \neq 0$.

(2)
$$\frac{1}{f(D^2, DD', D'^2)} \sin(ax + by) = \frac{1}{f(-a^2, -ab, -b^2)} \sin(ax + by)$$

if $f(-a^2, -ab, -b^2) \neq 0$

and

$$\frac{1}{f(D^2, DD', D'^2)} \cos(ax + by) = \frac{1}{f(-a^2, -ab, -b^2)} \cos(ax + by)$$
if $f(-a^2, -ab, -b^2) \neq 0$

(3)
$$\frac{1}{f(D,D')} x^m y^n = \frac{1}{1 + \phi\left(\frac{D}{D'}\right)} x^m y^n$$

Use
$$\frac{1}{1+t} = 1 - t + t^2 - t^3 + \dots$$

Or $\frac{1}{1-t} = 1 + t + t^2 + t^3 + \dots$ On $\frac{1}{1+\phi(D)}$ and use $\frac{1}{D}F(x, y) = \int F(x, y) \, dx$ and $\frac{1}{D'}F(x, y) \, dy$ to get P.I.

(4)
$$\frac{1}{f(D,D')}e^{ax+by}\phi(x,y) = e^{ax+by}\frac{1}{f(D+a,D'+b)}\phi(x,y)$$

(5) General method to find P.I.:

$$\mathbf{P.I.} = \frac{1}{f(D,D')} F(x, y)$$

$$= \frac{1}{(D-m_1D')(D-m_2D')(D-m_3D')....(D-m_nD')} F(x, y)$$

$$= \left\{ \frac{1}{(D-m_1)(D-m_2)(D-m_3)....} \right\} \frac{1}{D-m_1} F(x, y)$$

$$= \left\{ \frac{1}{(D-m_1)(D-m_2)(D-m_3)...} \right\} \int F(x, c - m_1 x) dx$$

Where c_1 is replaced by $y + m_1 x$. Continue above process for all factors of f(D). And get P.I. for y.

Lecture notes by Mr. Zalak Patel