Weightage for university exam: 18Marks

* $\quad \operatorname{Def}^{\mathrm{n}}$:

A diff. equation which involves partial derivatives is called partial differential equation. for e.g. $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=1$.

* Formation of a differential equation:

To form a differential equation from a given relationship of variables we will eliminate arbitrary constants or arbitrary functions of these variables using differentiation.

* Solution of a partial differential Equation:

A solution or integral of a partial differential equation is a relation between the variables, which is free from derivatives and satisfies the partial differential equation.
For e.g. $\mathrm{u}=\mathrm{e}^{\mathrm{x}}$ siny is a solution of $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.

* Complete Integral:

The solution which contains a number of arbitrary constants equal to the order of the differential equation is called a complete integral.

* Methods To Solve Partial Differential Equations:

> Method of Direct Integration:

This method is applicable to those problems, where direct Integration is possible. This solution depends on definition of P.D.E.

> Lagrange's equation :

The partial differential equation $\mathbf{P p}+\mathbf{Q q}=\mathbf{R}$,
Where $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are functions of $\mathrm{x}, \mathrm{y}, \mathrm{z}$.
is known as Lagrange's (linear) equation.
The general solution of the partial differential equation $\mathbf{P p}+\mathbf{Q q}=\mathbf{R}$, is

$$
\phi(\mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{v}(\mathrm{x}, \mathrm{y}, \mathrm{z}))=0,
$$

Where ϕ is an arbitrary function and $u(x, y, z)=c_{1}$ and $v(x, y, z)=c_{2}$ are two independent solutions of $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$ (subsidiary auxiliary equations).

* Solutions of Nonlinear Partial Differential Equations:

Standard forms:

(1) Equations involving only \mathbf{P} and \mathbf{Q} :
Form
: $f(p, q)=0$
Method to get solution
: Replace \mathbf{p} by a and \mathbf{q} by b in $f(p, q)=0$
Get form $f(a, b)=0$ and find relation $\mathrm{b}=\mathrm{F}(\mathrm{a})$.

Solution

$: \mathrm{z}=\mathrm{ax}+\mathrm{F}(\mathrm{a})+\mathrm{c}$.
(2) Equations not involving the independent variables:

Form

$$
\begin{equation*}
: f(z, p, q)=0 \tag{1}
\end{equation*}
$$

Method to get solution
: assume $\mathrm{q}=\mathrm{ap}$.
Then the (1) becomes $f(z, p, a p)=0$
Get form $\mathrm{p}=\phi(z, a)$
Use $\mathrm{dz}=\phi(z, a) \mathrm{dx}+\mathrm{a} \phi(z, a) \mathrm{dy}$
Solution

$$
: \int \frac{d z}{\phi(z, a)}=\mathrm{x}+\mathrm{ay}+\mathrm{b}
$$

(3) Separable Equations:

Form

$$
: f_{1}(x, p)=f_{2}(y, q)
$$

Method to get solution
: assume $f_{1}(x, p)=\mathrm{a}=f_{2}(y, q)$
Solving $f_{1}(x, p)=$ a, get $\mathbf{p}=\phi_{1}(x, a)$
Solving $f_{2}(y, q)=\mathrm{a}, \quad$ get $\mathbf{p}=\phi_{2}(y, a)$
Use $\mathrm{dz}=\phi_{1}(x, a) \mathrm{dx}+\phi_{2}(y, a) \mathrm{dy}$
Solution

$$
: \mathrm{z}=\int \phi_{1}(x, a) \mathrm{dx}+\int \phi_{2}(y, a) d y+\mathrm{b} .
$$

(4) Clairaut's Form:

Form

$$
\begin{equation*}
: \mathrm{z}=\mathrm{px}+\mathrm{qy}+f(p, q) \tag{1}
\end{equation*}
$$

Method to get solution : Replace \mathbf{p} by \mathbf{a} and \mathbf{q} by \mathbf{b} in (1)
Solution $: \mathrm{z}=\mathrm{ax}+\mathrm{by}+f(a, b)$.
(5) Equations Reducible to standard Forms:

This category includes those p.d.e. which do not fall directly under any of the above four forms

We can reduce our given equations in one of the above four forms

* Homogeneous Linear Partial Differential Equations With Constant Coefficient:

A diff. equation

$$
\begin{gathered}
\frac{\partial^{n} z}{\partial x^{n}}+a_{1} \frac{\partial^{n} z}{\partial x^{n-1} \partial y}+a_{2} \frac{\partial^{n} z}{\partial x^{n-2} \partial y^{2}}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots a_{n} \frac{\partial^{n} z}{\partial y^{n}}=F(x, y) \\
\text { Where } a_{1}, a_{2}, \ldots \ldots \ldots \ldots . . a_{n} \text { are constants }
\end{gathered}
$$

is called Linear partial differential equation of $\mathrm{n}^{\text {th }}$ order first degree.
Above equation can be written by
$\left(D^{n}+a_{1} D^{n-1} D^{\prime}+a_{2} D^{n-2} D^{\prime 2}+\right.$ \qquad $\left.+a_{n} D^{\prime n}\right) z=F(x, y)$
Where $\mathrm{D}=\frac{d}{d x}$ and $\mathrm{D}^{\prime}=\frac{d}{d y}$
(1) can be written as $\mathbf{f}\left(\mathbf{D}, \mathbf{D}^{\prime}\right) \mathbf{z}=\mathbf{F}(\mathbf{x}, \mathbf{y})$

* General Solution of Differential Equation:

General solution $=$ Complementary function + Particular integral

$$
\text { G.S. } \quad=\quad \text { C.F. }+ \text { P.I. }
$$

* Complementary function (C.F.)of Differential Equation

The solution which contains a number of arbitrary constants equal to the order of the differential equation is called the complementary function (C.F.) of a Differential equation.

* Auxiliary Equation:

An equation $\mathbf{f}\left(\mathbf{D}, \mathbf{D}^{\prime}\right)=\mathbf{0}$ is Auxiliary Equation .

* Method to find C.F. :

Solve equation $\left(D^{n}+a_{1} D^{n-1} D^{\prime}+a_{2} D^{n-2} D^{\prime 2}+\right.$. \qquad $\left.+a_{n} D^{\prime n}\right) z=0$
for values of $\mathrm{D} \& \mathrm{D}$ '.
Say factorization is $\left(D-m_{1} D^{\prime}\right)\left(D-m_{2} D^{\prime}\right)\left(D-m_{3} D^{\prime}\right)$. \qquad $.\left(D-m_{n} D^{\prime}\right)=0$.
Then we can classify roots and we can find C.F. by following way

Sr. No.	Classification of roots	C.F.
1	If roots $\mathrm{D}=\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}, \ldots \ldots \ldots, \mathrm{~m}_{\mathrm{n}}$ of Auxiliary equation are real and distinct	$y=f_{1}\left(y+m_{1} x\right)+f_{2}\left(y+m_{2} x\right)+\ldots \ldots \ldots$.
2	Two roots are equal (real roots $)$ i.e. If roots are $\mathrm{m}_{1}=\mathrm{m}_{2}, \mathrm{~m}_{3} \ldots \ldots, \mathrm{~m}_{\mathrm{n}}$	$y=f_{1}\left(y+m_{1} x\right)+x f_{2}\left(y+m_{1} x\right)$ $+f_{3}\left(y+m_{3} x\right) \ldots \ldots \ldots$

* Method to find P.I. :

Consider f(D, D') $\mathbf{z}=\mathbf{F}(\mathbf{x}, \mathrm{y})$
Particular integral can be given by P.I. $=\frac{1}{f\left(D, D^{\prime}\right)} F(x, y)$

* Short cut methods to find P.I.:

Let given L.P.D.E. is. $\mathbf{f}\left(\mathbf{D}, \mathbf{D}^{\prime}\right) \mathbf{z}=\mathbf{F}(\mathbf{x}, \mathbf{y})$
We can use following short cut methods to find P.I.
(1) $\frac{1}{f\left(D, D^{\prime}\right)} e^{a x+b y}=\frac{1}{f(a, b)} e^{a x+b y} \quad$ if $f(a, b) \neq 0$.

$$
\begin{equation*}
\frac{1}{f\left(D^{2}, D D^{\prime}, D^{\prime 2}\right)} \sin (a x+b y)=\frac{1}{f\left(-a^{2},-a b,-b^{2}\right)} \sin (a x+b y) \tag{2}
\end{equation*}
$$

$$
\text { if } f\left(-a^{2},-a b,-b^{2}\right) \neq 0
$$

and
$\frac{1}{f\left(D^{2}, D D^{\prime}, D^{\prime 2}\right)} \cos (a x+b y)=\frac{1}{f\left(-a^{2},-a b,-b^{2}\right)} \cos (a x+b y)$
if $f\left(-a^{2},-a b,-b^{2}\right) \neq 0$

$$
\begin{equation*}
\frac{1}{f\left(D, D^{\prime}\right)} x^{m} y^{n}=\frac{1}{1+\phi\left(\frac{D}{D^{\prime}}\right)} x^{m} y^{n} \tag{3}
\end{equation*}
$$

Use $\frac{1}{1+t}=1-t+t^{2}-t^{3}+$. \qquad
Or $\frac{1}{1-t}=1+t+t^{2}+t^{3}+\ldots \ldots \ldots \ldots \ldots \ldots . \quad$ On $\frac{1}{1+\phi(D)}$ and use $\frac{1}{D} F(x, y)=\int F(x, y) d x$ and $\frac{1}{D^{\prime}} F(x, y) d y$ to get P.I.

$$
\begin{equation*}
\frac{1}{f\left(D, D^{\prime}\right)} e^{a x+b y} \phi(x, y)=e^{a x+b y} \frac{1}{f\left(D+a, D^{\prime}+b\right)} \phi(x, y) \tag{4}
\end{equation*}
$$

(5) General method to find P.I.:

$$
\begin{aligned}
\text { P.I. } & =\frac{1}{f\left(D, D^{\prime}\right)} F(x, y) \\
& =\frac{1}{\left(D-m_{1} D^{\prime}\right)\left(D-m_{2} D^{\prime}\right)\left(D-m_{3} D^{\prime}\right) \ldots \ldots \ldots \ldots . .\left(D-m_{n} D^{\prime}\right)} F(x, y) \\
& =\left\{\frac{1}{\left(D-m_{1}\right)\left(D-m_{2}\right)\left(D-m_{3}\right) \ldots \ldots \ldots \ldots . .}\right\} \frac{1}{D-m_{1}} F(x, y) \\
& =\left\{\frac{1}{\left(D-m_{1}\right)\left(D-m_{2}\right)\left(D-m_{3}\right) \ldots \ldots \ldots \ldots . .}\right\} \int F\left(x, c-m_{1} x\right) d x
\end{aligned}
$$

Where \mathbf{c}_{1} is replaced by $\mathbf{y}+\mathbf{m}_{1} \mathbf{x}$.
Continue above process for all factors of $f(D)$. And get P.I. for y .

