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PARTIAL DIFFERENTIAL EQUATIONS

            Weightage for university exam:          18Marks

 Def n :
A diff. equation which involves partial derivatives is called partial differential 
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 Formation of a differential equation: 

To form a differential equation from a given relationship of variables we will 
eliminate arbitrary constants or arbitrary functions of these variables using 
differentiation.

    Solution of a partial differential Equation:

A solution or integral of a partial differential equation is a relation between the
 variables, which is free from derivatives and satisfies the partial differential
 equation.

For e.g. u = e x siny is a solution of 0
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 Complete Integral:

The solution which contains a number of arbitrary constants equal to the order of the 
differential equation is called a complete integral.

 Methods To Solve Partial Differential Equations:

 Method of Direct Integration:

This method is applicable to those problems, where direct Integration is 
      possible. This solution depends on definition of P.D.E.

 Lagrange’s equation :

The partial differential equation Pp + Qq =R, 
Where P, Q, R are functions of x, y, z.

  is known as Lagrange’s (linear) equation.

The general solution of the partial differential equation Pp + Qq =R, is

 (u(x,y,z), v(x,y,z)) = 0, 

Where   is an arbitrary function and u(x,y,z) = c1and v(x,y,z) = c2 are two 

independent solutions of
R
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 (subsidiary auxiliary equations).
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 Solutions of Nonlinear Partial Differential Equations:

Standard forms:

(1) Equations involving only P and Q:

Form : ),( qpf = 0
Method to get solution : Replace p by a and q by b in ),( qpf =0

  Get form ),( baf = 0 and find relation b = F(a).
 Solution : z = ax + F (a) + c.

(2) Equations not involving the independent variables:

Form : ),,( qpzf  = 0 ….(1)
Method to get solution : assume q = ap.

Then the (1) becomes ),,( appzf = 0
 Get form p = ),( az
 Use dz = ),( az dx + a ),( az dy

 Solution :  ),( az

dz


 = x + ay + b.

(3) Separable Equations:

Form :  qyfpxf ,),( 21  ….(1)

Method to get solution : assume ),(1 pxf = a =  qyf ,2

 Solving ),(1 pxf = a,get  p = ),(1 ax
  Solving ),(2 qyf = a, get p = ),(2 ay
  Use dz = ),(1 ax dx + ),(2 ay dy

 Solution : z =  ),(1 ax dx +  dyay ),(2  + b.

(4) Clairaut’s Form:

Form : z = px +qy + ),( qpf ….(1)
Method to get solution : Replace p by a and q by b in (1)
Solution : z = ax + by + ),( baf .

(5) Equations Reducible to standard Forms:

This category includes those p.d.e. which do not fall directly under any 
of the above four forms

We can reduce our given equations in one of the above four forms
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 Homogeneous Linear Partial Differential Equations With Constant Coefficient:
A diff. equation
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Where  naaa ....,,........., 21  are constants

is called Linear partial differential equation of nth order first degree.

Above equation can be written by 
),()'..........................''( 22

2
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Where D = 
dx

d
  and D’ =

dy

d

(1) can be written as f (D,D’) z= F(x,y)

 General Solution of Differential Equation:

General solution = Complementary function + Particular integral 
G.S.    =   C.F. + P.I.

 Complementary function (C.F.)of Differential Equation

The solution which contains a number of arbitrary constants equal to the order 
of the differential equation is called the complementary function (C.F.) of a 
Differential equation.

 Auxiliary Equation:

An equation f (D,D’) = 0 is Auxiliary Equation .

 Method to find C.F. :

Solve equation zDaDDaDDaD n
n

nnn )'..........................''( 22
2

1
1   = o

      for values of D & D’.
Say factorization is       0'.............''' 321  DmDDmDDmDDmD n .

Then we can classify roots and we can find C.F. by following way

Sr.
No.

Classification of roots C.F.

1
If  roots D = m1, m2 ,m3 ,………,mn

of Auxiliary equation are real and distinct
..........)()( 2211  xmyfxmyfy

2
Two roots are equal (real roots)
i.e. If  roots  are m1= m2 , m3 ……,mn ).........(

)()(
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 Method to find P.I. :

Consider f (D, D’) z = F(x, y)

Particular integral can be given by P.I. = ),(
)',(

1
yxF

DDf
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 Short cut methods to find P.I.:

Let given L.P.D.E. is. f (D, D’) z = F(x, y)
We can use following short cut methods to find P.I.
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            (5)    General method to find P.I.:
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Where c1 is replaced by y + m1x.
Continue above process for all factors of )(Df . And get P.I. for y.


